首页> 外文OA文献 >Sparse Variational Bayesian Approximations for Nonlinear Inverse Problems: applications in nonlinear elastography
【2h】

Sparse Variational Bayesian Approximations for Nonlinear Inverse Problems: applications in nonlinear elastography

机译:非线性逆的稀疏变分贝叶斯近似   问题:非线性弹性成像中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an efficient Bayesian framework for solving nonlinear,high-dimensional model calibration problems. It is based on a VariationalBayesian formulation that aims at approximating the exact posterior by means ofsolving an optimization problem over an appropriately selected family ofdistributions. The goal is two-fold. Firstly, to find lower-dimensionalrepresentations of the unknown parameter vector that capture as much aspossible of the associated posterior density, and secondly to enable thecomputation of the approximate posterior density with as few forward calls aspossible. We discuss how these objectives can be achieved by using a fullyBayesian argumentation and employing the marginal likelihood or evidence as theultimate model validation metric for any proposed dimensionality reduction. Wedemonstrate the performance of the proposed methodology for problems innonlinear elastography where the identification of the mechanical properties ofbiological materials can inform non-invasive, medical diagnosis. An ImportanceSampling scheme is finally employed in order to validate the results and assessthe efficacy of the approximations provided.
机译:本文提出了一种有效的贝叶斯框架,用于解决非线性,高维模型校准问题。它基于变分贝叶斯公式,旨在通过解决在适当选择的分布族上的优化问题来近似精确的后验。目标是双重的。首先,寻找可捕获尽可能多的相关后验密度的未知参数向量的低维表示,其次,能够以尽可能少的前向调用来计算近似后验密度。我们讨论了如何通过使用完全贝叶斯论证并利用边际可能性或证据作为任何提出的降维的最终模型验证指标来实现这些目标。演示提出的方法在非线性弹性成像中的问题的性能,其中生物材料的机械特性的识别可以为非侵入性医学诊断提供帮助。最后采用了重要性抽样方案,以验证结果并评估所提供近似方法的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号